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The present work focuses on the development of a viscosity equation
g=g(r, T) for propane through a multilayer feedforward neural network
(MLFN) technique. Having been successfully applied to a variety of fluids so
far, the proposed technique can be regarded as a general approach to viscosity
modeling. The MLFN viscosity equation has been based on the available exper-
imental data for propane: validation on the 969 primary data shows an average
absolute deviation (AAD) of 0.29% in the temperature, pressure, and density
range of applicability, i.e., 90 to 630 K, 0 to 60 MPa, and 0 to 730 kg · m−3. This
result is very promising, especially when compared with experimental data
uncertainty. The minimum amount of required data for setting up the MLFN
has been investigated, to explore the minimum cost of the model. Comparisons
with other viscosity models are presented regarding amount of input data,
claimed accuracy, and range of applicability, with the aim of providing a gui-
deline when viscosity has to be calculated for engineering purposes. A high
accuracy equation of state for the conversion of variables from experimental
P, T to operative r, T has to be provided. To overcome this requirement, two
viscosity explicit equations in the form g=g(P, T) are also developed, for the
liquid and for the vapor phases. The respective AADs are 0.58 and 0.22%,
comparable with those of the former g=g(r, T) equation. Finally, the trend of
the experimental viscosity second virial coefficient is reproduced and compared
with that obtained from the MLFN.

KEY WORDS: feedforward neural networks; heuristic techniques; propane;
viscosity.



1. INTRODUCTION

The state of the art for viscosity surface representation, on which the
present work focuses, suggests at least two approaches. First, predictive or
semipredictive models can be used. These models are often based on corre-
sponding states theory [1–7] and, in many cases, they are capable of esti-
mating the property with an accuracy level sufficient for engineering
calculations.

Alternatively, conventional viscosity equations can be used, which are
based on the residual concept superimposing three parts: the dilute-gas, the
excess terms, and the critical enhancement. This technique is essentially
correlative and requires experimental data as evenly distributed as possible
over the entire thermodynamic PrT surface. It usually leads to an equation
in the form g=g(r, T). Since the viscosity data are inevitably related to
the experimentally-accessible (T, P) variables, an equation of state is
needed to convert (T, P) to (T, r). Moreover, viscosity data at pressures
approaching zero have to be extrapolated to fit the coefficients of the dilute-
gas term in the viscosity equation. Because the final correlation relies only
on the available data, this poses the question of whether a completely
empirical correlation g=g(r, T) could be developed directly from data
alone.

The aim of the present work is to develop two viscosity equations, the
first in T, r and the second in T, P variables, directly based on experimen-
tal data through a multilayer feedforward neural network (MLFN), which
can be considered as one of the most powerful and flexible regression
techniques for function approximation.

The study is devoted to propane, for which a conventional dedicated
viscosity equation has already been developed by Vogel et al. [9], thus
enabling comparison of the results. So far the MLFN approach has been
successfully applied to R123 [10], R134a [11], ethane [12], R152a [13],
and now propane; as a consequence, the present technique can be regarded
as a general tool for viscosity calculations.

2. CONVENTIONAL VISCOSITY EQUATION FOR PROPANE

Vogel et al. [9] developed a dedicated viscosity equation for propane
using the conventional procedure base on the residual concept [14]:

g(r, T)=g0(T)+DgR(T, r)+DgC(T, r) (1)

where g0(T) is the dilute-gas term representing the zero-density limit of gas
viscosity and DgR(T, r) is the residual or excess function for the calculation
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of which the dilute-gas and the critical enhancement terms must be sub-
tracted from the actual viscosity value.

In the dilute-gas region data are needed in the lower density zone in
order to extrapolate to the zero-density values. Isothermal data are
collected and regressed through a linear fit, where on the x-axis density is
reported while the y-axis represents viscosity. As will be shown later, the
slope is related to the second virial viscosity coefficient while the intercepts
at r=0 for different temperatures are used to regress the coefficients of the
zero-density viscosity function, upon which the form is theoretically based.

The critical enhancement term DgC(T, r) describes the behavior of a
fluid in the critical region, where the transport properties are influenced by
long-range fluctuations. The critical enhancement of the transport proper-
ties can be described by a crossover theory [15, 16]. Since this term has
only a modest influence on viscosity and only when very close to the criti-
cal point and since data in the critical region are lacking, the term is not
taken into account for propane.

The excess term describes the density dependence. While the zero-
density function is theoretically sound, this term is purely empirical, since
both the analytical form and the coefficients have to be optimized. For this
purpose, as many data as possible are required.

To convert the (T, P) variables to (T, r), Vogel et al. adopted a
MBWR 32-term equation of state [17]; the accuracy of the converting
equation is critical, since a small error in density can propagate to signifi-
cant deviations when used in the viscosity correlation. In the dense phase
an error of 0.1% can lead to a viscosity error of 10%, as can easily be seen
from a sensitivity analysis of the viscosity equations. The validity ranges of
that viscosity equation are 90 [ T [ 478 K and P [ 62 MPa.

During the development of the present work a further multiparameter
equation of state in the form of the dimensionless Helmholtz free energy
has been made available for propane in the literature [60], but it was
anyway proved that the small increase of volumetric accuracy introduced
by this equation could not affect the global results obtained with the
present formulation.

3. NEURAL NETWORKS

In the preceding sections it was pointed out that:

1. Even though the structure of the conventional viscosity equation
sounds theoretically well-based, experimental data distributed over
the whole PrT surface are needed in order to regress the coeffi-
cients of the three contributions;
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2. It is by no means easy to find the most suitable analytical form for
representing the density and temperature dependence of the resi-
dual term: it is not only a matter of parameters to fit but moreover
a matter of optimizing the excess term analytical form;

3. The fitting procedure is not straightforward; data have to be con-
verted in order to split the influences of the three terms;

4. A highly accurate equation of state is needed for converting the
measured variables (T, r) into (T, P).

Because experimental data covering the whole PrT surface are needed
for the development of a conventional viscosity equation dedicated to a
target fluid, it seems reasonable to test a single correlative technique based
directly on all available data. Clearly, the analytical form of the new model
has to be highly flexible in fitting the experimental viscosity surface of a
generic fluid. It cannot be an equation with a number of parameters to
regress because such a form may be too rigid and not suitable to be forced
on the experimental data. From previous experience, i.e., for R134a [11],
at low density viscosity may show an inversion point: it decreases to some
extent and then it increases to the zero-density limit. A simple polynomial
form, for example, cannot accurately represent such low-density behavior,
unless a poor representation in the high-dense phase is accepted. During
the preliminary stages, it was established that neural networks, applied as
function approximators, have demonstrated the required characteristics to
a high degree once applied to a viscosity surface. Reference is made to the
cases for R123 [10], R134a [11], ethane [12], and R152a [13] to which
this new procedure has been successfully applied.

A new correlation technique is then proposed here, based on neural
networks. The heart of the problem is to approximate the viscosity func-
tion by fitting the available data. What is called ‘‘training’’ in the neural
network reference literature is here a classical optimization problem
requiring the regression of viscosity data to obtain the ‘‘weighting factors,’’
i.e., the coefficients of the function.

Among different neural network architectures, a multilayer feed-
forward neural network (MLFN) with only one hidden layer seems to be the
most effective as a universal approximator of continuous functions in a
compact domain [18–20]. In this architecture there are several neuron
layers (multilayer) and information goes in one direction only, from input
to output (feedforward), i.e., from left to right in Fig. 1. This figure shows
the general architecture of a MLFN with a hidden layer, which is the ana-
lytical tool used in the present work as a viscosity equation model.

Referring to Fig. 1, the two values of the input layer, U1 and U2,
represent the independent variables. The independent variables U1 and U2

1244 Scalabrin and Cristofoli



 I=3  J+1 K=1

 .
 .
 .

U

S

 Bias1

Input layer

U

 Bias2

Hidden layer Output layer

 1

 2  1

(wij (wjk)H)   j

Fig. 1. General architecture of a MLFN.

then feed the hidden layer, made by J+1 nodes or neurons. The output of
each neuron Hj is

Hj=f 1 C
I

i=1
wijUi

2 (2)

where wij are the weights applied to the Hj neuron input information, I is
the number of input, and f is the transfer function,

f(x)=a
1

1+e−2bx (3)

with

x= C
I

i=1
wijUi (4)

Two positive parameters have been applied in Eq. (3) to make the
function’s behavior more flexible; a changes the activation span, and b

determines the steepness of the sigmoid function. In this work they are set,
respectively, to 1.0 and 0.005. What happens is that each neuron of a layer
makes the weighted summation of all the neurons in the previous layer, and
then passes this summation through a transfer function.
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The outputs of the hidden layer feed the output layer such that

Sk=f 1 C
J+1

j=1
wjkHj

2 (5)

where again f is the transfer function, Eq. (3), wjk are the weights applied
to the Sk neuron output information, and J is the number of hidden
neurons in the hidden layer.

Two more neurons are added to the input and to the hidden layers:
Bias 1 and Bias 2. They are needed to accelerate the regression of the
weighting factors. In this work they are both set to 1.0.

U3=Bias 1 (6)

HJ+1=Bias 2 (7)

If MLFN is applied to represent viscosity, then inputs U1 and U2 are,
respectively, temperature and density, while output S is viscosity. The only
unknown is the weighting factor set that can be regressed from experimen-
tal data, in the so-called training step.

The MLFN topology is determined once the number of neurons in the
three layers is fixed: I represents the number of neurons in the input layer
(comprehensive of a bias term), and K represents the number of neurons in
the output layer. In our case, there are two physical inputs and one physi-
cal output, so I=3 and K=1.

The number of neurons in the hidden layer J (bias not included) has to
be found by trial-and-error. The greater the J value, the better the accuracy
but also the lower the computational speed and the more likely the overfit-
ting. Different MLFNs are then regressed for different J values and the
optimum J is then determined after considering accuracy, computational
speed, and overfitting.

Due to the transfer function analytical form, Sk cannot be greater than
a, i.e., 1.0. In addition, the regression is more efficient if all inputs and
outputs are of the same order of magnitude: being the inputs of the order
of some MPa for pressure and of some hundreds of K for temperature, this
would slow down the regression and increase its sensitivity to local minima.
The problem is overcome by introducing the reduced variables and
compressing them through a proper compression function, before feeding
the MLFN.

Generally speaking, it is:

Ui=ui(Vi − Vmin, i)+Amin (8)
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where

ui=
Amax − Amin

Vmax, i − Vmin, i
(9)

and

Wk=exp 5Sk − Amin

sk
+g(Wmin, k)6− 1 (10)

where

sk=
Amax − Amin

g(Wmax, k) − g(Wmin, k)
(11)

g(x)=ln(x+1) (12)

Vi is the physical input (Tr and/or rr) and Wk is the physical output (gr);
Amin and Amax are the lower and upper ranges in which the physical inputs
and output are compressed, and here they are set to 0.05 and 0.95. Vmin, i

and Vmax, i are the limits of the independent input variables for the training
set, and Wmin, k and Wmax, k are the limit values of the output dependent
variable used in the training step. The quantity Vi is the independent vari-
able, and Wk is the dependent variable.

Equations (2) to (12) represent the MLFN mathematical formalism
and can be applied in sequential order.

The physical inputs are:

V1=Tr=T/Tc V2=rr=r/rc

and, similarly, the actual output W1 represents the dependent variable,

W1=gr(Tr, rr)=g/gc

Given an experimental data set of output Sk, in the independent
variables Ui, the weighting factors are found by minimizing the following
objective function by means of an optimization procedure:

fob=
1

NPT
C

NPT

i=1

1gcalc
i − gexp

i

si

22

(13)

where NPT is the number of experimental points and si is the claimed
experimental uncertainty of each data set.
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Once the training has been done, the viscosity equation is obtained in
a continuous form. For further details about the characteristics of the
MLFN applied, reference is made to the previous viscosity models for
R123 [10] and R134a [11].

4. VISCOSITY NEURAL NETWORK EQUATIONS

4.1. Viscosity Explicit Equation

Since an MLFN is a mathematical function that links some inputs
with some outputs, it seems reasonable to correlate viscosity data with the
independent variables using this technique.

In Eqs. (2) to (12), considering that I=3 and K=1, it becomes

V1=Tr V2=rr W1=gr (14)

where the reducing critical parameters are Tc=369.825 K, Pc=4.248 MPa,
and rc=220.48 kg · m−3. The viscosity reducing factor is gc=

M1/2P2/3
c

R1/6N1/3
A T1/6

c
=

17.103 mPa · s where M=44.098 kg · kmol −1 is the molar mass, R is the
universal gas constant, and NA is Avogadro’s number. In the present work
a MBWR 32-term equation of state from Younglove and Ely [17] is
applied.

The viscosity data are generally classified as primary or secondary, and
only the former ones are used in the correlation regression. The guidelines
for the screening procedure are discussed in specialized textbooks, e.g.,
Ref. 14. In the present work the screening procedure adopted was as
follows. We maintained as primary the data considered by Vogel et al. [9]
as primary in developing their equation, even if they were measured at
temperatures and pressures outside the validity range of their equation. We
then tested all available 1577 experimental viscosity data versus the con-
ventional equation and included all data with deviations less than 6%. We
also included data that were not considered for the conventional equation,
because they have appeared more recently. The data screened in this way
were considered as primitive. Using these data, a first neural network version
was regressed. After this preliminary screening, the first neural network
was tested versus the primitive data. Neglecting the experimental points
with deviations larger than 2%, a finer screening was done to identify the
primary data, amounting to 969 in all, for which the final viscosity-MLFN
equation was fitted. In Fig. 2 these data are presented in a Tr, Pr plane.
After the data screening, the weighting factors of the MLFN equation
(wij and wjk matrices)—which are the new viscosity equation parameters for
propane in a general form gr=g(rr, Tr)—can be obtained. With reference
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Fig. 2. Distribution of the propane primary data on the Pr, Tr plane. Error of the MLFN
correlation.

to the previous paragraph, the optimum number of neurons in the hidden
layer in this case is J=10. The weighting factors are 30 for the first matrix
wij and 11 for the second matrix wjk, for a total of 41 weighting factors.
The weighting factors as well as the other parameters and the residual error
of the correlation are reported in Table I.

4.2. Viscosity Equations as Functions of Temperature and Pressure

In addition to considering a viscosity equation of the previous form,

g=g(r, T) (15)

which has to be coupled with an equation of state for variable conversion,
an equation system such as the one below could be written [21]:

˛ g=g(r, T)
P=P(r, T)

(16)
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Table I. Parameters of the Viscosity MLFN Equations: gr=gr(Tr, rr) for the Overall
Surface and gr=gr(Tr, Pr) for the Liquid and for the Vapor Regions

Overall Liquid Vapor
Tr, rr region region

i j wij wij wij

1 1 −1713.0600 −445.1590 −1037.7300
2 1 −1045.1800 2313.1700 171.0600
3 1 −698.8860 216.1800 −313.1420
1 2 1677.6000 −1737.5600 −281.6000
2 2 −1945.2600 331.4590 −42.9631
3 2 1682.6200 29.7240 90.0886
1 3 1294.5100 −257.8920 −4178.9500
2 3 536.4880 94.3698 975.5590
3 3 684.0470 108.7730 −3246.3200
1 4 −28.9535 −867.4630 −6558.5800
2 4 −522.6580 6113.5100 3051.5900
3 4 199.0630 402.8330 −2839.0600
1 5 372.8290 514.9170 −1319.1900
2 5 218.7270 −610.6200 421.4900
3 5 156.5680 −30.1998 −340.9980
1 6 153.2520 1196.8600 −3325.8700
2 6 685.2320 −1146.2300 −1161.1700
3 6 −112.9170 1063.6500 −3041.5100
1 7 −186.3270 658.7780 −2763.8900
2 7 637.8760 −4405.1300 340.6490
3 7 −668.6830 −228.9610 −2462.8600
1 8 −1191.9200 7346.8700 −4435.3500
2 8 −199.7620 −1825.9000 1337.9000
3 8 −481.6150 −56.9284 −3058.0500
1 9 −120.5360 1.28091 −5873.4100
2 9 −591.1310 307.5410 2080.1800
3 9 72.1437 −78.7515 −3462.7300
1 10 9298.3900 2698.5600 −4506.3700
2 10 −5334.3800 −798.9420 −3873.6400
3 10 4059.4600 −162.0800 −4463.9800

Overall Liquid Vapor
Tr, rr region region

j k wjk wjk wjk

1 1 −0.29518 1810.6900 −5747.6100
2 1 −1314.6200 −70.8132 −310.4120
3 1 −538.9390 −1083.6200 −241.8480
4 1 −421.3980 4079.4100 −1133.1500
5 1 1152.6500 −648.7840 3195.2200
6 1 2185.4800 −1634.8500 −310.4100
7 1 1114.8500 1837.6700 −176.7470
8 1 −113.9130 −3264.3900 −453.5870
9 1 2771.0200 −2021.7700 −933.0710

10 1 −3533.1200 −203.5590 −77.8700
11 1 2008.1600 1085.7400 28.3214

Overall Liquid Vapor
Tr, rr region region

Parameter

a 1 1 1
b 0.005 0.005 0.005

Amin 0.05 0.05 0.05
Amax 0.95 0.95 0.95

Bias 1 1.0 1.0 1.0
Bias 2 1.0 1.0 1.0

I 3 3 3
J 10 10 10
K 1 1 1

AAD training 0.29% 0.58% 0.22%

Overall Liquid Vapor
Tr, rr region region

Parameter

V1min Tr=0.2 Tr=0.2 Tr=0.7
V1max Tr=1.8 Tr=1.8 Tr=1.8
V2min rr=0.0 Pr=0.0 Pr=0.0
V2max rr=4.0 Pr=235.0 Pr=1.0
W1min gr=0.4 gr=0.4 gr=0.4
W2max gr=800.0 gr=800.0 gr=2.0
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From this system a functional form F(P, T, g)=0 could be derived,
avoiding density as a variable and consequently not requiring the use of a
high accuracy equation of state for the target fluid. From such F form, the
three explicit functional forms can be extracted:

T=T(P, g) (17)

P=P(T, g) (18)

g=g(T, P) (19)

which could be regressed by means of the former MLFN technique, still
exclusively based on experimental data. These new functional forms are
here named viscosity equations of state because they merge a viscosity
equation and a thermodynamic equation of state.

Generally speaking, the form T=T(P, g) for the whole surface has to
be discarded due to the presence of viscosity minima for isobaric lines at
near- and super-critical temperatures [11]. To follow such behavior,
Eq. (17) would be forced to give two temperature solutions for the same
viscosity value at the same pressure. Figure 3 shows isobaric lines: for
propane viscosity minima are not experienced.

The form P=P(T, g) cannot be generally applied for a similar reason;
viscosity minima for the isothermal lines in the low-density vapor region
may be encountered, depending on the single-fluid behavior. This form was
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Fig. 3. Behavior of the MLFN viscosity model for the whole surface in an extended critical
region.
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successfully developed for oxygen [21] with a different regression tech-
nique, because for that fluid the isothermal lines increase monotonically,
not too steeply, and without minima.

The form g=g(T, P) cannot be considered for the whole surface,
because at saturation for a given T, PS(T) input couple the two viscosity
values gS

liq, gS
vap have to be output. By separating the liquid region from the

vapor region, two distinct equations of this form can be developed, one for
each region, avoiding the inconsistency of the coexistence curve and also
the viscosity minima representation difficulties.

Considering a case in which, for a target fluid, a high accuracy viscos-
ity equation is required for only the liquid surface, where a sufficient
amount of data is supposed to be available, but without disposing of the
dedicated EoS for such fluid, the equation form (Eq. (19)) can be easily
obtained. In this case the conventional method, Eq. (1), cannot be applied
at all. Using the liquid data, an equation for the propane liquid surface is
developed in the form of Eq. (19) demonstrating this further possibility of
the proposed technique.

For the parallel case of the vapor region, the preceding problem can
be similarly posed and a viscosity equation, with the form of Eq. (19), can
be obtained directly from viscosity data, even if at low pressure they are
not ordered along isotherms to allow the development of the conventional
dilute-gas term [14]. In this case too, the dedicated EoS is not needed. The
screening procedure for the two single-phase region equations leads to a
classification of 207 and 528 primary data over a total of 479 and 781
points for the liquid and vapor regions, respectively. The supercritical
region with both Tr > 1 and Pr > 1 can be similarly regressed, but it has not
been done here for the sake of brevity.

4.3. Three Viscosity Equations: Parameters, Range of Validity, and
Regression Residual Error

Following the preceding procedure, three MLFN have been obtained
and their parameters are listed in Table I. For the viscosity equation
g(T, r) it is V1=Tr, V2=rr, and W1=gr, while for the two viscosity equa-
tions g(T, P) it is V1=Tr, V2=Pr, and W1=gr.

The validity ranges of the equations correspond to the primary data
boundaries. For the viscosity equation of the g=g(r, T) form, valid for
the whole surface, they are 90 [ T [ 630 K, 0 [ r [ 730 kg · m−3, and
0 [ P [ 60 MPa. For the viscosity equation of the g=g(T, P) form, valid
for the liquid region, the ranges are 90 K [ T [ Tc and 0 [ P [ 60 MPa,
whereas for the similar equation valid for the vapor region the ranges are
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90 [ T [ 630 K and 0 [ P [ Pc. In developing the two separate g=g(T, P)
equations, the whole surface has been subdivided by the coexistence line
into two regions, excluding the supercritical region with both Tr > 1 and
Pr > 1. The optimum number of neurons in the hidden layer for all three
equations is J=10. The weighting factors are 30 for the first matrix wij and
11 for the second one wjk, for a total of 41 weighting factors. As reported in
Table I, the residual error is, in all the cases, comparable to the experimen-
tal uncertainty.

5. VALIDATION OF THE NEW VISCOSITY EQUATIONS

The validation of the viscosity equations is reported in Table II
together with comparisons with the conventional equation. The data are
split into primary and secondary sets as previously discussed. The primary
set has been used for the training step, and, consequently, the correspond-
ing AADs are to be considered as the residual errors of the correlations.

The AAD for the g(T, r) equation is 0.29%, that is, basically the
experimental uncertainty of the data. The bias is −0.01%, showing then no
systematic deviation is observed. The process of selecting the primary data
and discarding the secondary results depending on the AAD, bias, and
maximum deviation during the best fit of the MLFN, represents a powerful
statistical data screening and it is one of the advantages of the present
technique. On the other hand, for the same data, the AAD and bias of the
conventional equation are, respectively, 0.80 and 0.67%. In Fig. 2 all the
primary data with the residual error of the correlation are reported. The
fact that some points with high deviations lay nearby some with very low
deviations, suggests that the higher residual errors are due to experimental
data uncertainty, rather than to a poor performance of the MLFN model.

The obtained accuracy on primary data for the two equations in the
g=g(T, P) form, the first for the liquid and the second for the vapor sur-
faces, show AAD values of 0.58 and 0.22%. The bias values of all three
new equations, all very close to the zero line, indicate the absence of sys-
tematic shifting.

In the low-density vapor domain an inversion trend with respect to
density has not been found for the obtained viscosity equation. In the
region a considerable number of data is available, see Fig. 4, and the
MLFN equation performs very well with respect to primary vapor data at
low pressure, suggesting that the equation can be considered reliable in that
region. In the same region some isotherms are shown in Fig. 4, to show
that a wavy trend, typical of an overfitted equation with a high J value,
does not occur.
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Fig. 4. Behavior of the MLFN viscosity model for the whole surface for the gas region with
evidence that the locus of viscosity minima is not found.

6. ZERO-DENSITY LIMIT AND INITIAL DENSITY DEPENDENCE
OF VISCOSITY

The viscosity of a pure vapor at lower densities may be represented by
a density expansion truncated at the first power:

g(r, T)=g (0)(T)+g (1)(T) r+ · · · =g (0)(T)[1+Bg(T) r+ · · · ] (20)

In this equation the functions g (0)(T) and g (1)(T) are the zero-density
and the initial density coefficients, whereas Bg(T) is the second viscosity
virial coefficient. Since at low density the terms raised to superior powers
are negligible, g (0)(T) and g (1)(T) functions can be determined by fitting
isothermal viscosity data at low density as a linear function of density. At
each temperature the intercept and the slope of such straight lines represent
the zero-density and the initial density coefficients. This has been done for
propane, as reported in Fig. 5; low-density vapor data from Refs. 8 and 28
have been furthermore considered, limiting the points to r [ 10 kg · m−3

leading to total of 218 data. The isothermal experimental data are fitted to
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Fig. 5. Viscosity as a function of density for several isotherms: g=g (0)+g (1)r. Experimental
data from Refs. 8 and 28.

a straight line, Eq. (20), to obtain g (0) and g (1) values at different tempera-
tures, and finally to get the experimental viscosity second virial coefficient,

Bg(T)=
g (1)(T)
g (0)(T)

(21)

Even though the procedure could seem to be trivial, some difficulties
arise in evaluating g (1), i.e., the slope of the viscosity linear function. From
Fig. 5 the linear fit seems to be carried out with a high degree of accuracy.
If data from Ref. 8 are focused, for example, on isotherm Tr=0.804, scat-
tering is highlighted and the linear fit looks very poor, with an unaccept-
able correlation coefficient r2 equal to 0.43. This affects, to a large extent,
the slope evaluation and then Bg(T). Figure 6 visually demonstrates this
result. Looking at the y-axis scale in Fig. 6 and at the deviation from
experimental data, then the maximum deviation is observed to be 0.063%,
which is well below the uncertainty of any viscosity experimental tech-
niques. Consequently, the following conclusion can be drawn: in order to
evaluate the slope of low-density viscosity dependence and then Bg(T) , the
required experimental accuracy appears to be greater than that currently
available using the common experimental techniques.

It is possible to analyze the low-density behavior of the present MLFN
equation in the g=g(r, T) form, in terms of the Bg(T) function. The
second viscosity virial coefficient, Eq. (21), is analytically obtained from the
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Fig. 6. Viscosity as a function of density for the Tr=0.804 isotherm: g=g (0)+g (1)r. Exper-
imental data from Ref. 8.

g=g(r, T) MLFN equation imposing r=0 to both the equation itself and
its first derivative with respect to density, allowing the g (0)(T) and g (1)(T)
functions to be generated. When validated on the 218 low-density experi-
mental viscosity data, the MLFN equation gives AAD and bias values of
0.092 and −0.04%, respectively; the representation of the data themselves
is then of very high quality. Comparing the AAD with the maximum
deviation reported on Fig. 6, i.e., 0.063%, it becomes evident that in spite
of being an absolutely reliable data correlation, the representation of slopes
could not be as accurate as expected, because of the extremely high resolu-
tion required.

There is a third way for evaluating Bg(T). The reduced viscosity
second virial coefficient can be defined in the following way:

Bg
g (Tg)=

Bg(T)
NAs3 (22)

Tg=kBT/e (23)

where e/kB and s are the fluid dependent Lennard-Jones 12-6 potential
parameters, while NA is Avogadro’s number. The parameters e/kB and s

are derived from the dilute-gas viscosity function g (0)(T) [8, 9, 14, 56, 57]
and for propane it is e/kB=263.88 K and s=0.49748 nm. The Rainwater
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Fig. 7. Comparison of Bg
g (Tg) as generated through experimental data, MLFN and theoret-

ically sounded model. Experimental data from Refs. 8 and 28.

and Friend theory [56, 57] can be used to theoretically predict the Bg
g (Tg)

function, whose form has been recently enhanced by Vogel [8], Bich and
Vogel [30], and then by Vogel et al. [9], recommending at last the follow-
ing equation:

Bg
g (Tg)= C

6

i=0
bi(Tg)−0.25i+b7(Tg)−0.25+b8(Tg)−5.5 (24)

Bg
g (Tg) deduced from experimental data, the MLFN equation, and

universal Eq. (24) are shown in Fig. 7.
Some comments can be drawn. First of all, the three approaches do

not seem to match, reflecting the fact that high resolution is required to
evaluate Bg

g (Tg), as previously discussed. Even staying within data uncer-
tainties of some parts per ten thousand, the low-density slope can be mis-
calculated. Data from Refs. 8 and 28 are considered primary and thus
reliable, and the MLFN reproduce them within 0.092%, but this leads to
significant different Bg

g (Tg) values.
Secondly, Eq. (24) predicts negative values for Bg

g (Tg), meaning that
an inversion point occurs, i.e., along isotherms and approaching to zero
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density, viscosity first decreases and then it starts to increase to g (0)(T).
This is not shown by the MLFN. If Fig. 4 is considered, data seem to show
that an inversion point does not occur. Viscosity could decrease and then
increase in a span of some parts per ten thousand, a range that is lower
than the resolution of experimental techniques and of MLFN accuracy.
This does not seem to affect the value of the present work, since the devia-
tions among different approaches is generated by deviations on data that
are absolutely negligible on viscosity calculation. The MLFN could be
forced to fit the first derivative of viscosity with respect to density, in order
to represent the theoretical Bg

g (Tg), but this is out of the scope of the work,
which claims to rely solely on the data.

7. COST OF THE MODEL AND COMPARISON WITH OTHER
MODELS

The following question should be posed: if the viscosity of a given
fluid needs to be calculated, which approach should be chosen? The answer
depends on the amount of information and of the time required both for
setting up and running the model, i.e., on the cost of the model, and on the
accuracy that needs to be reached.

The present MLFN g=g(r, T) equation has been regressed on 969
experimental primary data. We tried to reduce this number, and we
validated the resulting equation on the complete 969 data set. Results are
reported in Table III. When less than half the data are considered, MLFN
is not able to represent the viscosity surface. As a rule of thumb, MLFN
should only be considered for representing the whole surface when few
hundreds of data are available. In addition, extrapolation where data are
lacking is not reliable.

MLFN has been also used for representing viscosity in the framework
of an extended corresponding state approach [58, 59]. Using a few tens of
data, an uncertainty of around 1.0% can be attained [58]. Consequently,
depending on the target accuracy and on the available data, one of the two

Table III. Performance of Viscosity MLFN as Function of Number of Experimental Data

Residual Deviation on total Maximum deviation on total
NPT for training error 969 primary data primary data

MLFN training % % %

969 0.29 0.29 3.59
512 0.43 0.52 5.48
256 0.59 153.0 24251.0
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Table IV. Comparisons between Viscosity Models

Model Input Accuracy Advantages Disadvantages

Conventional equation – Few hundreds of 0.8 to 2.7% – Accuracy – Data reduction required for
[9, 14] data – Moderate the three contributions

– EoS for extrapolation regression
conversion of allowed – Not applicable to a limited
variables region

– Rigid analytical form
sometimes does not allow to
be spread on data

MLFN equation in T, r – Few hundreds of 0.3% – Accuracy – No extrapolation allowed
[present work, 10–13] data – Straightforward

– Eq. of state for from data
conversion of – Applicable to a
variables limited region

– Flexibility
MLFN equation in T, P – Few hundreds of 0.3% – Accuracy – No extrapolation allowed
[present work, 10–13] data – Straightforward

from data
– Applicable to a

limited region
– Flexibility
– No Eq. of state

required
MLFN applied to – Few tens of data 1.0% – Few input needed – Chemical similitude
extended eorresponding – EoS for a – Straightforward (conformality) with a well
states [58, 59] reference fluid from data known reference fluid

– Viscosity – Applicable to a required
equation for a limited region
reference fluid – Flexibility

Three parameter – EoS for two 1.0 to 2.0% – Predictive – Conformality with two well
corresponding states reference fluids known reference fluids
[1-6] – Viscosity eq. for required

two reference – Accuracy
fluids

approaches can be chosen. In Table IV a comparison between models is
presented, to provide guidelines about which technique can be selected for
viscosity calculations.

8. CONCLUSIONS

A new method based on the multilayer feedforward network technique
has been proposed for the development of a conventional viscosity equa-
tion and has been applied to propane, for which a former conventional
equation was available. The method is completely correlative and based
directly on the available viscosity data. Three viscosity explicit functions
are proposed here; the first is in the r, T variables and the other two are in
the P, T variables, one for only the liquid region and the other for only the
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vapor region. These last two equations do not require a high accuracy
equation of state for conversion of the variables. The accuracies of the
three new MLFN viscosity equations with respect to primary data present
AAD values ranging from 0.22 to 0.58%. A validation of the conventional
equation with respect to the present data sets gives an uncertainty of 0.67%
on the 969 primary data.

The initial density dependence, as derived from the present model, is in
substantial agreement, within the limits of the data accuracy in that region,
with the theoretical predictions of the reduced second viscosity virial coef-
ficient.

Considering the heuristic and non-theoretically founded nature of the
method, it can be furthermore used as a powerful tool for experimental
data screening. The neural networks represent promising tools for viscosity
equation development, being able to represent the whole viscosity surface
well within the uncertainty of the experimental data.
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